Bursting of thalamic neurons and states of vigilance.
نویسندگان
چکیده
This article addresses the functional significance of the electrophysiological properties of thalamic neurons. We propose that thalamocortical activity, is the product of the intrinsic electrical properties of the thalamocortical (TC) neurons and the connectivity their axons weave. We begin with an overview of the electrophysiological properties of single neurons in different functional states, followed by a review of the phylogeny of the electrical properties of thalamic neurons, in several vertebrate species. The similarity in electrophysiological properties unambiguously indicates that the thalamocortical system must be as ancient as the vertebrate branch itself. We address the view that rather than simply relays, thalamic neurons have sui generis intrinsic electrical properties that govern their specific functional dynamics and regulate natural functional states such as sleep and vigilance. In addition, thalamocortical activity has been shown to be involved in the genesis of several neuropsychiatric conditions collectively described as thalamocortical dysrhythmia syndrome.
منابع مشابه
Neurobiological Modeling of Bursting Response During Visual Attention
Thalamic neurons have an exclusive property named bursting response. Bursting response seems to have a critical role in producing saliency map and encoding conspicuity of locations during visual attention. Attention window is developed in thalamus due to its retinotopic organization. The global competitive network in thalamic reticular nucleus (NRT) determines which thalamic cells should produc...
متن کاملBurst and tonic response modes in thalamic neurons during sleep and wakefulness.
Thalamic neurons can exhibit two distinct firing modes: tonic and burst. In the lateral geniculate nucleus (LGN), the tonic mode appears as a relatively faithful relay of visual information from retina to cortex. The function of the burst mode is less understood. Its prevalence during slow-wave sleep (SWS) and linkage to synchronous cortical electroencephalogram (EEG) suggest that it has an imp...
متن کاملThalamic bursting in rats during different awake behavioral states.
Thalamic neurons have two firing modes: tonic and bursting. It was originally suggested that bursting occurs only during states such as slow-wave sleep, when little or no information is relayed by the thalamus. However, bursting occurs during wakefulness in the visual and somatosensory thalamus, and could theoretically influence sensory processing. Here we used chronically implanted electrodes ...
متن کاملHigher-order thalamic relays burst more than first-order relays.
There is a strong correlation between the behavior of an animal and the firing mode (burst or tonic) of thalamic relay neurons. Certain differences between first- and higher-order thalamic relays (which relay peripheral information to the cortex versus information from one cortical area to another, respectively) suggest that more bursting might occur in the higher-order relays. Accordingly, we ...
متن کاملTransitions to synchrony in coupled bursting neurons.
Certain cells in the brain, for example, thalamic neurons during sleep, show spike-burst activity. We study such spike-burst neural activity and the transitions to a synchronized state using a model of coupled bursting neurons. In an electrically coupled network, we show that the increase of coupling strength increases incoherence first and then induces two different transitions to synchronized...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 95 6 شماره
صفحات -
تاریخ انتشار 2006